178

Bioelectromagnetism

Ahmad, M., Galland, P., Ritz, T., Wiltschko, R., and Wiltschko, W. 2007. Magnetic intensity afects

cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624.

Al-Khalili, J., and McFadden, J. 2014. Life on the Edge: Te Coming of Age of Quantum Biology. Bantam

Press, London, UK.

Alexander, Y.R., Roman, V.C., Anna, A., Kirill, V.K., Nikita, C., Michael, L.F., and Luba, A.A. 2020.

Searching for magnetic compass mechanism in pigeon retinal photoreceptors. PLoS One

15(3):e0229142.

Ali, S.S., Maeda, K., Murai, H., and Azumi, T. 1997. Surprisingly large magnetic feld efect in the

electron-transfer reaction of 4,4'-bipyridine with triethylamine in acetonitrile. Chem Phys Lett

267(5–6):520–524.

Antill, L.M., and Woodward, J.R. 2018. Flavin adenine dinucleotide photochemistry is magnetic feld

sensitive at physiological pH. J Phys Chem Lett 9:2691–2696.

Atkins, C., Bajpai, K., Rumball, J., and Kattnig, D.R. 2019. On the optimal relative orientation of radicals

in the cryptochrome magnetic compass. J Chem Phys 151:065103.

Babcock, N.S., and Kattnig, D.R. 2020, Electron-electron dipolar interaction poses a challenge to the

radical pair mechanism of magnetoreception. J Phys Chem Lett 11(7):2414–2421.

Ball, P. 2011. Physics of life: the dawn of quantum biology. Nature 474(7351):272–274.

Banerjee, R., Schleicher, E., Meier, S., Viana, R.M., Pokorny, R., Ahmad, M., Bittl, R., and Batschauer, A.

2007. Te signaling state of Arabidopsis cryptochrome 2 contains favin semiquinone. J Biol Chem

282(20):14916–14922.

Barnes, F.S., and Greenebaum, B. 2015. Te efects of weak magnetic felds on radical pairs.

Bioelectromagnetics 36(1):45–54.

Barnes, F.S., and Greenebaum, B. 2016. Some efects of weak magnetic felds on biological systems: RF

felds can change radical concentrations and cancer cell growth rates. IEEE Power Electron magaz

60–68.

Batchelor, S.N., Kay, C.W.M., McLauchlan, K.A., and Shkrob, I.A. 1993. Time-resolved and modulation

methods in the study of the efects of magnetic felds on the yields of free-radical reactions. J Phys

Chem 97:13250–13258.

Beason, R.C., and Semm, P. 1987. Magnetic responses of the trigeminal nerve system of the bobolink

(Dolichonyx oryzivorus). Neurosci Lett 80:229–234.

Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M., and Wolf, E. 2007. A novel

photoreaction mechanism for the circadian blue-light photoreceptor Drosophila cryptochrome. J

Biol Chem 282(17):13011–13021.

Bertea, C.M., Narayana, R., Agliassa, C., Rodgers, C.T., and Mafei, M.E. 2015. Geomagnetic feld (Gmf)

and plant evolution: investigating the efects of Gmf reversal on Arabidopsis thaliana development

and gene expression. J Vis Exp 105:53286.

Bialas, C., Barnard, D.T., Auman, D.B., McBride, R.A., Jarocha, L.E., Hore, P.J., Dutton, P.L., Stanley,

R.J., and Moser, C.C. 2019. Ultrafast favin/tryptophan radical pair kinetics in a magnetically sen­

sitive artifcial protein. Phys Chem Chem Phys 21(25):13453–13461.

Binhi, V.N., and Prato, F.S. 2018. Rotations of macromolecules afect nonspecifc biological responses to

magnetic felds. Sci Rep 8(1):13495.

Biskup, T., Hitomi, K., Getzof, E.D., Krapf, S., Koslowski, T., Schleicher, E., and Weber, S. 2011.

Unexpected electron transfer in cryptochrome identifed by time-resolved EPR spectroscopy.

Angew Chem Int Ed Engl 50(52):12647–12651.

Biskup, T., Schleicher, E., Okafuji, A., Link, G., Hitomi, K., Getzof, E.D., and Weber, S. 2009. Direct

observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. Angew

Chem Internat Ed 48(2):404–407.

Blankenship, R.E., Schaafsma, T.J., and Parson, W.W. 1977. Magnetic feld efects on radical pair inter­

mediates in bacterial photosynthesis. Biochem Biophys Acta 461(2):297–305.